PLANO DE EMERGÊNCIA 2016/2017 BALNEÁRIO CAMBORIÚ - SC

SUMÁRIO

1		Intr	oduç	ão	2
2		Sis	tema	de abastecimento de água (saa)	2
	2	.1.	Esta	nção de Tratamento de Água (ETA)	3
		2.1	1.	Calha Parshall	4
		2.1	.2.	Floculador	5
		2.1	.3.	Decantador	5
		2.1.	4.	Filtro	5
		2.1.	5.	Desinfecção	6
	2.	2.	Res	ervatórios	6
	2.	3.	Dist	ribuição Água Tratada	. 7
3.	•	Sist	ema	de esgotamento sanitário (SES)	7
	3.	1.	Grad	deamento, desarenador e caixa de gordura	8
	3.	2.	Trata	amento biológico	10
	3.	3.	Dec	antadores	10
	3.	4.	Tand	que de contato	11
4.		Prin	cipais	s responsáveis pelo sistema	11
5.		Esc	ala de	e serviço para temporada	12
6.		Med	lidas	tomadas para evitar possíveis problemas	12
	6.	1.	Gera	ndor de energia	12
	6.5	2.	Adut	ora nova	13
	6.3	3.	Ехра	nsão da Estação de Tratamento de Água (ETA)	13
	6.4	4.	Obra	s das Praias Agrestes	14
	6.9	5.	Ativio	dades de manutenção	14
	(6.5.	1. 1	Manutenção do Sistema de Abastecimento de Água (SAA)	14
	(6.5.2	2.	Manutenção do Sistema de Esgotamento Sanitário (SES)	15
	6.6	3.	Cont	ratação de Caminhões-pipa	15
7	(Ըոր	clusă	n	10

1. INTRODUÇÃO

A Empresa Municipal de Água e Saneamento de Balneário Camboriú – EMASA vem, através desse documento, listar atividades que foram e estão sendo executadas para atender melhor o usuário final de água, principalmente na temporada de verão, período em que aumenta consideravelmente a população a ser abastecida e, consequentemente a quantidade de esgoto a ser tratada.

2. SISTEMA DE ABASTECIMENTO DE ÁGUA (SAA)

A captação de água bruta ocorre no município de Camboriú – SC, no Rio Camboriú, conforme indicado no mapa da Figura 1. O Rio Camboriú está enquadrado na classe II, de acordo com a Resolução CONAMA 357, de 17 de março de 2005.

Figura 1 – Mapa com indicação da localização da Estação de Tratamento de Água (ETA), da Estação de Recalque de Água Bruta (ERAB) e da Estação de Tratamento de Esgoto (ETE)

Nova Esperança (Fonte: Google Earth).

Na captação, há uma barragem de nível constante que impede o contato da água a ser captada com a água salina, como pode ser visto na Figura 2. Ainda na captação, há dois canais de coleta de água bruta contendo caixa de desarenamento e de gradeamento para retenção de sólidos, mostrados na Figura 3.

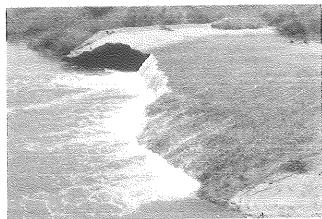


Figura 2 – Barragem no local da captação de água bruta (©Assessoria de Imprensa/EMASA).

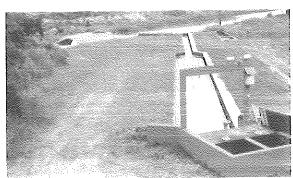


Figura 3 – Canal de entrada de água bruta (©Assessoria de Imprensa/EMASA).

Junto à captação, está localizada a Estação de Recalque de Água Bruta (ERAB), a qual é composta por 4 conjuntos motor-bomba.

O transporte até a Estação de Tratamento de Água (ETA) ocorre através de uma adutora com diâmetro de 600mm e outra de 400mm. A adutora de 800mm foi instalada parcialmente no final de 2015, mas já está contribuindo para o aumento da vazão aduzida.

2.1. Estação de Tratamento de Água (ETA)

A Estação de Tratamento de Água é composta pelas seguintes etapas:

- Calha Parshall
- Floculador
- Decantador
- Filtro
- Desinfecção

As etapas estão representadas no desenho da Figura 4 e são descritas a seguir. A vazão nominal de projeto da ETA, com a ampliação, é de 1000 l/s, podendo chegar a 1400l/s em momentos críticos.

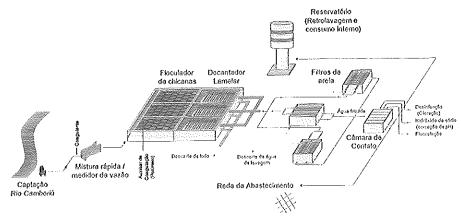


Figura 4 - Diagrama de funcionamento da ETA

2.1.1. Calha Parshall

A Calha Parshall, também conhecida como câmara de mistura rápida e mostrada na Figura 5, é a fase em que é aplicado o coagulante Policloreto de Alumínio (PAC). O PAC possibilita a redução da turbidez.

Nessa etapa, também é medida a vazão de entrada de água bruta e são realizadas coletas para análise de turbidez. As análises são realizadas a cada duas horas e auxiliam na determinação da quantidade de polímero a ser aplicado na etapa da floculação mais adiante.

A partir da Calha Parshall, o sistema se divide em três linhas de tratamento. Foi realizada a ampliação das etapas seguintes com a construção de dois novos floculadores e decantadores, e atualmente o sistema se divide em 5 linhas de tratamento.

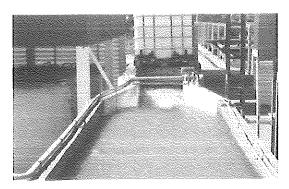


Figura 5 - Calha Parshall (@Assessoria de Imprensa/EMASA).

2.1.2. Floculador

O floculador é composto por chicanas. Nessa etapa, as partículas de sólidos são aglutinadas devido à ação do coagulante aplicado na Calha Parshall, formando flocos.

Além disso, nessa fase também é adicionado o polímero, que funciona como um catalisador e acelera o processo de aglutinação resultante da adição de coagulante. Esse processo permite a redução da turbidez.

A quantidade de polímero a ser adicionada depende de vários fatores, como por exemplo, turbidez, cor, temperatura, vazão, entre outros.

Atualmente a ETA conta com 5 floculadores.

2.1.3. Decantador

Nessa etapa, os flocos formados se depositam no fundo. O decantador é formado por módulos lamelares, que permitem uma área de implantação menor com a mesma garantia de remoção das partículas. Atualmente a ETA conta com 5 decantadores.

Uma parte do decantador pode ser vista na Figura 6.

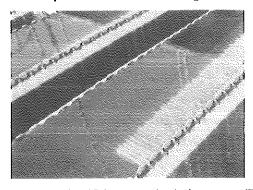


Figura 6 – Decantador (©Assessoria de Imprensa/EMASA).

2.1.4. Filtro

Após passar pelo decantador, a água vai para o filtro. A ETA possui 6 filtros abertos com leito filtrante formado por pedregulho, areia e antracito.

A lavagem dos filtros é realizada periodicamente com a injeção de água em fluxo de sentido contrário. A ETA possui um reservatório com capacidade de 350 m³, que armazena a água destinada à lavagem dos filtros. Essa operação se faz necessária para não reduzir a eficiência dos filtros, já que ao longo do tempo ocorre um acúmulo de sólidos nos filtros, também chamado de colmatação.

2.1.5. Desinfecção

Assim que a água sai dos filtros, ela vai para o tanque de contato, onde ocorre a desinfecção. Esse tanque tem um volume de 176 m³ e nesse local são adicionados cloro, ácido fluossilícico e hidróxido de sódio.

A partir da câmara de contato, a água é destinada à rede de distribuição com auxílio de bombas de recalque.

2.2. Reservatórios

O sistema de abastecimento de água de Balneário Camboriú conta com 03 (três) reservatórios: R1, R2 e R3. Existe o reservatório R4, com capacidade de 500m³, que pertence à companhia de abastecimento de água de Camboriú e abastece esse município.

O reservatório R1 tem capacidade de 6.600 m³ e abastece os seguintes bairros de Balneário Camboriú: Centro, Bairro dos Estados, Bairro das Nações, Ariribá, Praia dos Amores e Pioneiros.

O reservatório R2 tem volume de 6.500 m³ e abastece os seguintes bairros de Balneário Camboriú: Barra Sul, Municípios, Vila Real, late Clube, Barra, Nova Esperança, Jardim Bandeirantes e São Judas Tadeu.

O reservatório R3, implantado recentemente, reforçou o abastecimento do Bairro das Nações, Ariribá, Pioneiros e Praia dos Amores. O reservatório tem capacidade de armazenar de 2000 m³. Ele já está funcionando e reforçando o abastecimento do bairro das Nações, Ariribá e parte do Pioneiros.

Os reservatórios R1, R2 e R4 estão equipados com medição de nível ultrassônico e os valores são transmitidos para a ETA via rádio.

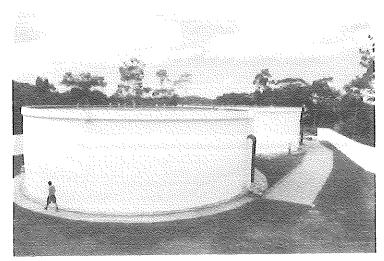


Figura 7 - Reservatório R3 localizado na Rua Venezuela (©Assessoria de Imprensa/EMASA).

2.3. Distribuição Água Tratada

A Estação de Recalque de Água Tratada (ERAT), que é responsável pelo abastecimento de água a Balneário Camboriú e Camboriú, é composta por 4 estações elevatórias. Estas, por sua vez, alimentam os reservatórios R1, R2, R3 e R4 e diretamente na rede dos bairros Tabuleiro e Monte Alegre, do município de Camboriú.

Após a implantação do reservatório R3, alguns boosters foram desativados e atualmente estão funcionando os seguintes boosters:

- Bairro São Judas;
- Loteamento Schultz;
- Av. do Estado em frente ao Mescke;
- Rua Hemógenes Assis Feijó;
- Rua Bento da Cunha;
- Rua Jardim Denise.

3. SISTEMA DE ESGOTAMENTO SANITÁRIO (SES)

A Estação de Tratamento de Esgoto (ETE) Nova Esperança está localizada no Estado de Santa Catarina, no município de Balneário Camboriú, no Bairro Nova Esperança. A capacidade máxima da ETE Nova Esperança, sem o terceiro decantador é de 582l/s.

A ETE Nova Esperança é composta pelas seguintes unidades:

- Gradeamento;
- Desarenador;

- Caixa de gordura;
- Tanque de aeração prolongada por lodo ativado;
- Unidade de reciclo do lodo;
- Decantador;
- Tanque de contato.

As etapas estão representadas no desenho da Figura 8 e são descritas a seguir.

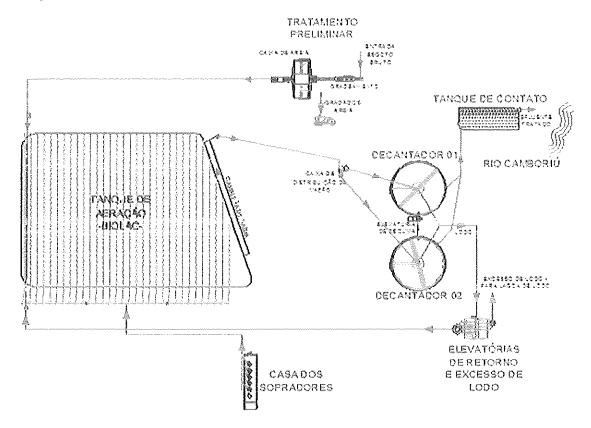


Figura 8 - Desenho da ETE Nova Esperança

3.1. Gradeamento, desarenador e caixa de gordura

O gradeamento, desarenador e caixa de gordura compõem a primeira etapa do tratamento de esgoto.

O esgoto bruto chega à ETE Nova Esperança por um canal de entrada aberto que se divide em duas linhas. A primeira fase é o gradeamento, que retém os sólidos mais grosseiros, e ocorre através de uma grade de limpeza manual e outra automática na sequência.

O gradeamento mecanizado é do tipo esteira e é formado por duas grades finas, como pode ser visto na Figura 9. Os resíduos são transportados por uma rosca "sem fim" até a caçamba de armazenamento.

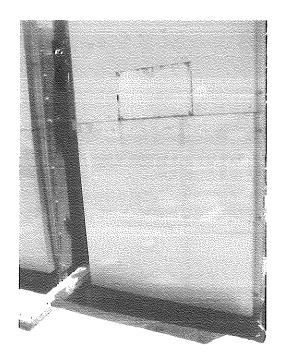


Figura 9 - Gradeamento mecanizado realizado na etapa preliminar (©Assessoria de Imprensa/EMASA).

A próxima etapa é o desarenador, cujo objetivo é a remoção de areias para reduzir o desgaste por abrasão dos equipamentos mecânicos. Os desarenadores são tanques quadrados com 9m de lado, com raspadores de fundo, e o transporte da areia até a caçamba acontece através de uma rosca transportadora do tipo "sem fim".

Figura 10 - Desarenador (@Assessoria de Imprensa/EMASA).

Logo após, o efluente vai para a caixa de gordura. Esta é essencial para remover substâncias gordurosas, óleos e graxas, que podem se aderir às paredes das tubulações. Além disso, esses compostos prejudicam o tratamento biológico.

3.2. Tratamento biológico

O tratamento biológico ocorre por meio de um tanque de lodo ativado por aeração prolongada para remoção de matéria orgânica biodegradável, que pode ser visto na Figura 11.

O tanque de tratamento biológico possui dimensões 150m por 120m e profundidade de 3,5m e tem como objetivo reduzir a quantidade de matéria orgânica, nitrogênio e fósforo no efluente.

A injeção de ar ocorre de forma difusa através de tubos difusores móveis, presos a tubulações flutuantes e móveis. Esse tipo de tratamento biológico possui um alto grau de mecanização e eficiência elevada.

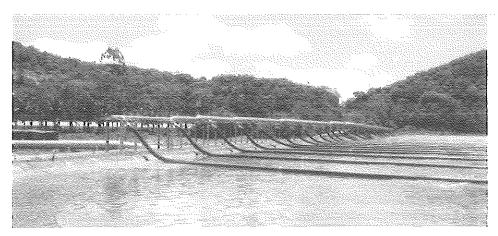


Figura 11 – Tanque de lodo ativado por aeração prolongada (©Assessoria de Imprensa/EMASA).

3.3. Decantadores

Nessa fase ocorre a sedimentação dos sólidos, a clarificação do efluente e a separação do lodo por densidade. A ETE possui 02 decantadores circulares com 34m de diâmetro cada e profundidade útil de 3,6m próximo à parede lateral (Figura 12).

O lodo é recirculado e volta para o tanque de lodo ativado por aeração prolongada, enquanto que o efluente clarificado segue para o tanque de contato.

Figura 12 - Decantador (©Assessoria de Imprensa/EMASA).

3.4. Tanque de contato

No tanque de contato, ocorre a desinfecção com cloro gás e é adicionado anti-espumante. Próximo ao decantador, há uma estrutura onde ficam armazenados os cilindros de cloro gás e o anti-espumante.

O efluente tratado é lançado no corpo receptor, em um ribeirão que deságua no Rio Camboriú a 2,3km da sua foz.

4. PRINCIPAIS RESPONSÁVEIS PELO SISTEMA

A Estação de Tratamento de Água e a coordenação da equipe de operadores estão sob responsabilidade de dois funcionários: Joanna Ferreira Godinho e Caio Cardinalli Rebouças, ambos analistas químicos do quadro de funcionários efetivos da EMASA.

A Estação de Tratamento de Esgoto está sob supervisão do funcionário efetivo Mario Holz, técnico em saneamento do quadro de funcionários efetivos da EMASA.

A Estação de Recalque de Água Bruta está sob coordenação do Operador Nelson Stueber, Operador de Estação do quadro de funcionários efetivos da EMASA. Todas as equipes contam com orientação de 1 (um) Engenheiro Sanitarista; 1 (um) Engenheiro Ambiental, 1 (um) Engenheiro Civil 1 (um) Engenheiro Eletricista, bem como de técnicos laboratoriais, técnicos em saneamento e técnicos em edificação, entre outros funcionários do quadro técnico.

Todo o setor de Operação está sob cuidados do Gerente de Operação Ricardo Barbieri.

Diretoria Geral: André Ritzmann

Diretoria Técnica: Kelli Cristina Dacol

Diretoria Administração e Finanças: Eduardo Alexandre Martins

5. ESCALA DE SERVIÇO PARA TEMPORADA

Após a realização de concurso em 2015 para contratação de operadores, a fim de reforçar a escala de serviço da EMASA não só durante a temporada, mas o ano todo, a EMASA conta com a seguinte escala:

- Na Estação de Tratamento de Água (ETA), há 16 operadores, sendo 4 por turno;
- Na Estação de Tratamento de Esgoto (ETE), há 17 operadores, sendo 4 por turno e apenas no turno da manhã há 3 operadores;
- Na Estação de Recalque de Água Bruta (ERAB), há 12 operadores, sendo 3 por turno.

6. MEDIDAS TOMADAS PARA EVITAR POSSÍVEIS PROBLEMAS

Nesse capítulo, são identificados possíveis problemas que podem ocorrer no sistema de abastecimento de água e a seguir são listadas as soluções tomadas para evitá-los e/ou saná-los.

6.1. Gerador de energia

Tanto na Estação de Tratamento de Água (ETA) quanto na Estação de Recalque de Água Bruta (ERAB), existem três geradores de energia reserva. Isso evita que o abastecimento de água seja interrompido caso haja queda de energia na temporada, período em que há maior probabilidade de ocorrência desse tipo de problema.

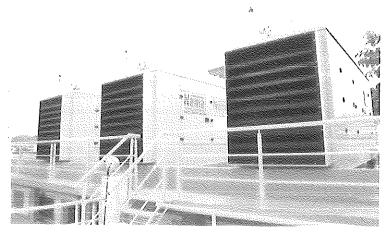


Figura 13 - Geradores de energia na ERAB (©Assessoria de Imprensa/EMASA).

Além disso, na ERAB, há 04 (quatro) conjuntos motor-bomba, com capacidade de recalque total de 1000CV.

6.2. Adutora nova

Foi instalada uma nova adutora de água bruta de 800 mm, a qual permitiu que uma quantidade maior de água fosse captada diminuindo riscos de rompimento de adutoras. Ainda é necessário concluir a parte final da instalação, mas ela já está em funcionamento e sua extensão total será de 3600m, ligando a ERAB até a ETA.

Com essa nova adutora, não será preciso parar o sistema para realizar manutenções nas adutoras de água bruta de 400 e 600 mm que já existem. A execução da nova adutora é muito importante para se atingirem níveis de segurança e eficiência energética adequadas.

6.3. Expansão da Estação de Tratamento de Água (ETA)

Está sendo realizada a obra de expansão da ETA com o objetivo de aumentar a capacidade de tratamento atual. Foi finalizada a obra civil dos 02 (dois) decantadores e 02 (dois) floculadores. Eles já estão operando normalmente, o que contribui para o aumento da capacidade de tratamento da estação.

Ainda faltam outras etapas para que as obras de ampliação sejam dadas como completas. Está previsto que o novo tanque de contato e o tanque pulmão estejam funcionando até o final do ano, aumentando a capacidade de

reservação e de tratamento. A capacidade do novo tanque de contato é 3461m³ e a capacidade do novo tanque pulmão é 1800m³.

Esse aumento de armazenamento é muito importante para acomodar possíveis paradas, como por exemplo, para fins de manutenção, e permite efetuar uma melhor gestão do sistema.

Outra etapa cuja conclusão está prevista para o final do ano é a nova Estação de Recalque de Água Tratada (ERAT), com bombas novas e, assim reduzindo a probabilidade de falhas nesse segmento.

6.4. Obras das Praias Agrestes

Foram reiniciadas as obras de instalação da rede de abastecimento de água nas Praias Agrestes. Nesta obra, está previsto também a construção de dois reservatórios e reforço da adutora que leva água tratada até os bairros da Barra e São Judas.

A implantação de uma adutora com maior diâmetro já foi realizado, reforçando assim o abastecimento de água para a região da Barra e São Judas.

Quanto ao restante das obras das Praias Agrestes, já foi implantada a tubulação de abastecimento de água, porém ainda falta a instalação dos 2 reservatórios de água tratada previstos.

Provavelmente a obra não ficará pronta para a temporada, não sendo possível ainda o abastecimento da região através da tubulação de água tratada da EMASA.

6.5. Atividades de manutenção

6.5.1. Manutenção do Sistema de Abastecimento de Água (SAA)

Na Estação de Tratamento de Água (ETA), está sendo realizando a manutenção dos decantadores mais antigos, com a troca das lamelas. Isso contribuirá para o aumento da eficiência do tratamento de água.

Outra atividade de manutenção prevista até o final do ano é a troca do filtro dos filtros, também contribuindo para o aumento da eficiência no sistema de tratamento.

Também está sendo realizada a revisão das bombas da ERAB para evitar possíveis problemas durante a temporada e foi adquirida mais uma bomba.

6.5.2. Manutenção do Sistema de Esgotamento Sanitário (SES)

Quanto às Estações Elevatórias de Esgoto (EEEs), todas possuem uma bomba sobressalente. Além disso, está sendo realizada a manutenção preventiva das bombas e reforma completa de algumas elevatórias, como a EEE 2950.

Na Estação de Recalque de Esgoto da 3700, foi instalada uma nova comporta de maré, para evitar que a maré entre na elevatória e chegue até a Estação de Tratamento de Esgoto (ETE) Nova Esperança, prejudicando assim o tratamento. Também está sendo providenciada nova grade mecanizada para a etapa preliminar da ETE Nova Esperança.

Há previsão de que mais EEEs passem a operar até o início da temporada e são: EEE Nova Esperança, Morro do Boi, Schultz, São Judas e Barra. Sendo que as elevatórias São Judas e Barra dependem de autorização da Auto Pista.

Além disso, são realizadas atividades de limpeza das elevatórias periodicamente para proporcionar seu correto funcionamento.

6.6. Contratação de Caminhões-pipa

Será realizada a contratação de empresas de caminhões-pipa, de modo que elas possam abastecer aquelas regiões que forem afetadas pela falta de água em situações emergenciais.

Tabela 1 - Possíveis problemas e ações a serem tomadas em cada caso.

Problema	Ações de emergência e contingência
Queda de energia	Uso de geradores de energia elétrica.
Quebra de equipamentos	- Reparo das instalações danificadas
e válvulas	- Comunicação à população sobre possível falha no
	abastecimento
Inundação da captação	- Após a reforma executada na ERAB, as bombas foram
	protegidas em locais acima da cota de enchente, porém
	se possíveis inundações prejudicarem a captação de
	água bruta, as medidas a serem tomadas serão as
	seguintes:
	- Comunicação às autoridades, defesa civil e população
	- Contratação de caminhões-pipa para abastecimento.

Estiagem		- Controle da água disponível nos reservatórios
		- Rodízio de abastecimento
		- Comunicação à população para fazer uso consciente
		da água
		- Comunicação às autoridades
Contaminação	do	- Contratação de caminhões-pipa
manancial		- Comunicação à população
		- Comunicação às autoridades
Ações de vandalismo		- Comunicação à polícia
		- Reparo das instalações danificadas

7. CONCLUSÃO

Todas essas medidas estão sendo tomadas a fim de evitar possíveis transtornos ao usuário de água. Porém, se mesmo assim, ocorrer algum fato imprevisível que prejudique o abastecimento de água, como por exemplo, rompimento de adutora, por um período superior ao aceitável, a EMASA fará a distribuição de água tratada com caminhões-pipa nas regiões afetadas.